			Absolutely Convergent and Conditionally Convergen
			00

1AA3 Review Session

Chengwei Qin

Department of Math & Stats, McMaster University

Feb. 5th, 2015

DQC

- Geometric Series
- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
- 4 Partial Sum
- 5 Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
- Other Approaches

Geometric Series

- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
- Partial Sum
- Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
- Other Approaches

Geometric Series

• The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots$$

is convergent if $\left|r\right|<1$ and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$

Example 1.1

11. Find the sum of the following series

(a)
$$\frac{\sin x - 3}{3}$$
 (b) $\frac{3}{\sin x}$ (c) $\frac{\sin x}{3}$ (d) $\frac{\sin x}{3 - \sin x}$ (e) $\frac{3}{3 - \sin x}$

Example 1.2

12. Find the values of x for which the series converges

$$\sum_{n=0}^{\infty} \frac{(2x+5)^n}{3^n}$$

(a) $\left(-\frac{2}{3}, \frac{5}{3}\right)$ (b) $\left(-8, -2\right)$ (c) $\left(-3, 3\right)$ (d) $\left(-\frac{2}{5}, \frac{2}{5}\right)$ (e) $\left(-1, -4\right)$

- Geometric Series
- 2 Integral Test
 - 3 Remainder Estimate for the Integral Test
 - Partial Sum
- 5 Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
- Other Approaches

Integral Test

• Let $a_n = f(n)$, then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ is convergent. On the contrary, if $\int_1^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Example 2.1

4. Find the values of p for which the series is convergent.

$$\sum_{n=2}^{\infty} \frac{(\ln n)^{p-1}}{n}$$

・ロト ・回ト ・ヨト ・ヨト

(a) $p \ge 1$ (b) p < 0 (c) $p \le 0$ (d) p < 1 (e) $p \le 1$

	Remainder Estimate for the Integral Test		Absolutely Convergent and Conditionally Convergen
			00

- Geometric Series
- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
 - 4 Partial Sum
- 5 Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
- Other Approaches

Remainder Estimate for the Integral Test

• Suppose
$$f(k) = a_k$$
 and $\sum a_n$ is convergent. If $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_n^{\infty} f(x)dx.$$

Example 3.1

3. What is the minimum number of terms needed in order to estimate the sum

$$\sum_{n=1}^{\infty} \frac{1}{(3n+5)^4}$$

correct to within .001? (a) 1 (b) 2 (c) 3 (d) 4 (e) 5

Sac

Example 3.2

5. If we use the partial sum s_{10} to approximate the sum of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

estimate the error involved in the approximation. (a) $\frac{1}{3000}$ (b) $\frac{1}{5000}$ (c) $\frac{1}{10000}$ (d) $\frac{1}{1000}$ (e) $\frac{1}{14641}$

Example 3.3

14. What is the minimum number of terms needed in order to estimate the following sum to within .001?

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)!}$$

(a) 2 (b) 3 (c) 4 (d) 5 (e) 6

DQC

- Geometric Series
- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
- Partial Sum
- 5 Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
- Other Approaches

Partial Sum

• When we know the partial sum s_n , then we can directly get $a_n = s_n - s_{n-1}$ when $n \ge 2$ and $a_1 = s_1$.

Example 4.1

12. If the
$$n^{th}$$
 partial sum of the series $\sum_{n=0}^{\infty} a_n$ is $s_n = \frac{2n+1}{4n+3} - \frac{n}{\ln n}$, find $\sum_{n=0}^{\infty} a_n$.
(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{2}{3}$ (e) divergent

DQC

- Geometric Series
- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
- Partial Sum
- 5 Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
- Other Approaches

Comparison Test

• Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent. If $\sum b_n$ is divergent and $a_n \geq b_n$ for all n, then $\sum a_n$ is divergent.

Example 5.1

7. Using the comparison theorem, which of the following integrals is convergent? (i) $\int_{1}^{\infty} \frac{x \sin^2 x}{\sqrt[3]{1+x^7}} dx$ (ii) $\int_{1}^{\infty} \frac{dx}{x+e^{2x}}$ (iii) $\int_{2}^{\infty} \frac{x^2}{\sqrt{x^6-1}} dx$ (a) (i) only (b) (ii) only (c) (i) and (ii) only (d) (i) and (iii) only (e) (ii) and (iii) only

<ロ> (日) (日) (日) (日) (日)

- Geometric Series
- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
- Partial Sum
- 5 Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
- Other Approaches

Absolutely Convergent and Conditionally Convergent

- For Alternating Series: If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - \dots \text{ where } b_n > 0. \text{ This series satisfies } b_{n+1} \leq b_n \text{ and } \lim_{n \to \infty} = 0 \text{ then the series is convergent.}$
- We define a absolutely convergent series $\sum a_n$ if the series of the absolute value $\sum |a_n|$ is convergent.
- A series ∑ a_n is called conditionally convergent if it is convergent but not absolutely convergent.

Example 6.1

16. Which of the following series are conditionally convergent?

(i)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1}$$
 (ii) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{3^n + 2}$
(a) (i) only (b) (ii) only (c) (i) and (ii) (d) neither

イロト イロト イヨト イヨン

- Geometric Series
- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
- 🕘 Partial Sum
- Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- Radius of Convergence
 - Other Approaches

Radius of Convergence

• For a given series $\sum_{n=1}^{\infty} c_n (x-a)^n$, there is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R.

Example 7.1

19. Find the radius of convergence of

$$\sum_{n=1}^{\infty} (n+1)! (3x-1)^n$$
 (a) ∞ (b) 0 (c) 1 (d) $\frac{1}{3}$ (e) $\frac{2}{3}$

▲ 三 → 三 → ○ < (~)
 Feb. 5th, 2015 26 / 35

Example 7.2

20. Find the radius of convergence of the following power series.

$$\sum_{n=0}^{\infty} (-1)^n \frac{1 \cdot 4 \cdot 7 \cdot \dots \cdot (3n-2)}{n! 3^n} x^{3n}$$
(a) $\sqrt[3]{3}$ (b) $\frac{1}{\sqrt[3]{3}}$ (c) 1 (d) 0 (e) ∞

Example 7.3

20. Find the radius of convergence of

$$\sum_{n=1}^{\infty} \frac{(2x+3)^n}{2^n(n+1)}$$

(a) 1 (b) 2 (c) 3 (d) $\frac{2}{3}$ (e) $\frac{3}{2}$

- Geometric Series
- 2 Integral Test
- 3 Remainder Estimate for the Integral Test
- 🕘 Partial Sum
- Comparison Test
- 6 Absolutely Convergent and Conditionally Convergent
- 7 Radius of Convergence
- 8 Other Approaches

The Radio Test

- If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L > 1$ or $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = 1$, then no conclusion.

イロト イポト イヨト イヨト 三日

The Root Test

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, then no conclusion.

Example 8.1

9. Determine whether the following sequences are convergent or divergent. When convergent, find the limit.

(i)
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$

(ii) $a_n = n\sin(n\pi)$
(a) diverges, diverges (b) diverges, 0 (c) 0, 0 (d) 1, diverges (e) 1, 0

Example 8.2

- **9.** Determine whether the following sequences are convergent or divergent. When convergent, find the limit.
 - (i) $a_n = \ln(n+1) \ln(2n)$ (ii) $a_n = n \sin(1/n)$ (a) divergent, divergent (b) divergent, 0 (c) $\ln \frac{1}{2}$, divergent (d) $\ln \frac{1}{2}$, 0 (e) $\ln \frac{1}{2}$, 1

Yes You Can!

C,Qin (MAC)

æ Feb. 5th, 2015 34 / 35

э

・ロト ・回ト ・ヨト ・

990