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Geometric Series

The geometric series

∞∑
n=1

arn−1 = a+ ar + ar2 + ...

is convergent if |r| < 1 and its sum is

∞∑
n=1

arn−1 =
a

1− r
.
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Integral Test

Let an = f(n), then the series
∑∞

n=1 an is convergent if and only if∫∞
1

f(x)dx is convergent. On the contrary, if
∫∞
1

f(x)dx is divergent, then∑∞
n=1 an is divergent.
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Remainder Estimate for the Integral Test

Suppose f(k) = ak and
∑

an is convergent. If Rn = s− sn, then∫ ∞
n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx.
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Partial Sum

When we know the partial sum sn, then we can directly get an = sn − sn−1

when n ≥ 2 and a1 = s1.
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Comparison Test

Suppose that
∑

an and
∑

bn are series with positive terms. If
∑

bn is

convergent and an ≤ bn for all n, then
∑

an is also convergent. If
∑

bn is

divergent and an ≥ bn for all n, then
∑

an is divergent.
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Absolutely Convergent and Conditionally Convergent

For Alternating Series: If the alternating series∑∞
n=1(−1)n−1bn = b1 − b2 + b3 − ... where bn > 0. This series satisfies

bn+1 ≤ bn and limn→∞ = 0 then the series is convergent.

We define a absolutely convergent series
∑

an if the series of the absolute

value
∑
|an| is convergent.

A series
∑

an is called conditionally convergent if it is convergent but not

absolutely convergent.
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Radius of Convergence

For a given series
∑∞

cn(x− a)n, there is a positive number R such that

the series converges if |x− a| < R and diverges if |x− a| > R.
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The Radio Test

If limn→∞ |an+1

an
| = L < 1, then the series

∑∞
n=1 an is absolutely convergent.

If limn→∞ |an+1

an
| = L > 1 or limn→∞ |an+1

an
| =∞, then the series

∑∞
n=1 an

is divergent.

If limn→∞ |an+1

an
| = 1, then no conclusion.
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The Root Test

If limn→∞
n
√
|an| = L < 1, then the series

∑∞
n=1 an is absolutely convergent.

If limn→∞
n
√
|an| = L > 1 or limn→∞

n
√
|an| =∞, then the series

∑∞
n=1 an

is divergent.

If limn→∞
n
√
|an| = 1, then no conclusion.
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Yes You Can!
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